Part Number Hot Search : 
XO3080 M16V6 M61541 200BZXC 5224B IDT74FCT 2SC22 LH28F
Product Description
Full Text Search
 

To Download MAX9015AEKAT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference 19-2874; rev 4; 1/15 general description the single max9015/max9016 and dual max9017max9020 nanopower comparators in space-saving sot23 packages feature beyond-the-rails inputs and are guaranteed to operate down to 1.8v. the a- grade packages feature an on-board 1.236v ?% ref- erence, while the b-grade packages feature a 1.24v ?.75% reference. an ultra-low supply current of 0.85? (max9019/max9020), 1? (max9015/max9016), or 1.2? (max9017/max9018) makes the max9015 max9020 family of comparators ideal for all 2-cell bat- tery monitoring/management applications. the unique design of the max9015?ax9020 output stage limits supply-current surges while switching, which virtually eliminates the supply glitches typical of many other comparators. this design also minimizes overall power consumption under dynamic conditions. the max9015/max9017/max9019 have a push-pull output stage that sinks and sources current. large internal output drivers allow rail-to-rail output swing with loads up to 6ma. the max9016/max9018/max9020have an open-drain output stage that makes them suit- able for mixed-voltage system design. all devices areavailable in the ultra-small 8-pin sot23 package. refer to the max9117?ax9120 data sheet for similar single comparators with or without reference in a tiny sc70 package. applications features ? ultra-low total supply current 0.85a (max9019/max9020) 1.0a (max9015a/max9016a) 1.2a (max9017/max9018) ? guaranteed operation down to 1.8v ? precision v os < 5mv (max) ? internal 1.236v 1% reference (a grade) ? input voltage range extends 200mv beyond-the-rails ? cmos push-pull output with 6ma drive capability (max9015/max9017/max9019) ? open-drain output versions available (max9016/max9018/max9020) ? crowbar-current-free switching ? internal 4mv hysteresis for clean switching ? no phase reversal for overdriven inputs ? dual versions in space-saving 8-pin sot23 package ordering information ordering information continued at end of data sheet. pin configurations appear at end of data sheet. beyond-the-rails is a trademark of maxim integrated products, inc. t = tape and reel. /v denotes an automotive qualified part. part temp range pin-package top mark max9015 aeka-t -40? to +85? 8 sot23 aeiw max9015aeka/v+t -40? to +85? 8 sot23 +aetv max9016 aeka-t -40? to +85? 8 sot23 aeix max9017 aeka-t -40? to +85? 8 sot23 aeiq max9017beka-t -40? to +85? 8 sot23 aeis selector guide part comparator(s) internal reference (v) output type supply current (a) max9015a 1 1.236 ?% push-pull 1 max9016a 1 1.236 ?% open drain 1 max9017a 2 1.236 ?% push-pull 1.2 max9017b 2 1.240 ?.75% push-pull 1.2 max9018a 2 1.236 ?% open drain 1.2 max9018b 2 1.240 ?.75% open drain 1.2 max9019 2 push-pull 0.85 max9020 2 open drain 0.85 2-cell batterymonitoring/management ultra-low power systems mobile communications notebooks and pdas threshold detectors/ discriminators window detectorssensing at ground or supply line telemetry and remote systems medical instruments downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 2 www.maximintegrated.com absolute maximum ratings electrical characteristicsmax9015Cmax9018 (single and dual s with ref) (v cc = 5v, v ee = 0v, v in - = v ref , t a = -40? to +85?, unless otherwise noted. typical values are at t a = +25?.) (note 1) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. supply voltage (v cc to v ee ) ....................................................6v in+, in-, ina+, inb+, ina-, inb-, ref/ina-, ref..................................(v ee - 0.3v) to (v cc + 0.3v) output voltage (out_) max9015a, max9017_, max9019 ....(v ee - 0.3v) to (v cc + 0.3v) max9016a, max9018_, max9020...................(v ee - 0.3v) to +6v output current (ref, out_, ref/ina-)............................?0ma output short-circuit duration (ref, out_, ref/ina-) ...........10s continuous power dissipation (t a = +70?) 8-pin sot23 (derate 9.1mw/? above +70?)............727mw operating temperature range ...........................-40? to +85? storage temperature range .............................-65? to +150? junction temperature ......................................................+150? lead temperature (soldering, 10s) .................................+300? soldering temperature (reflow) .......................................+260? parameter symbol conditions min typ max units supply voltage range v cc inferred from the psrr test 1.8 5.5 v v cc = 1.8v, t a = +25c 1.0 1.5 v cc = 5.0v, t a = +25c 1.1 1.7 max9015a/ max9016a v cc = 5.0v, t a = t min to t max 2.0 v cc = 1.8v, t a = +25c 1.2 1.9 v cc = 5.0v, t a = +25c 1.4 2.3 supply current i cc max9017_/ max9018_ v cc = 5.0v, t a = t min to t max 2.8 a input common-mode voltage range (max9015a/max9016a) v cm inferred from v os test v ee - 0.2 v cc + 0.2 v in+ voltage range (max9017_/max9018_) v in+ inferred from the output swing test v ee - 0.2 v cc + 0.2 v t a = +25c 0.15 5 input offset voltage v os v ee - 0.2v < v cm < v cc + 0.2v (note 2) t a = t min to t max 10 mv input-referred hysteresis v hb v ee - 0.2v < v cm < v cc + 0.2v (note 3) 4 mv t a = +25c 0.15 1 input bias current (in+, in-, ina+, inb+, inb-) i b t a = t min to t max 2 na power-supply rejection ratio psrr v cc = 1.8v to 5.5v 0.1 1 mv/v t a = +25c 100 200 v cc = 1.8v, i source = 1ma t a = t min to t max 300 t a = +25c 250 350 output voltage swing high (max9015a/max9017_) v cc - v oh v cc = 5.0v, i source = 6ma t a = t min to t max 450 mv t a = +25c 105 200 v cc = 1.8v, i sink = 1ma t a = t min to t max 300 t a = +25c 285 350 output voltage swing low (max9015a/max9016a/ max9017_/max9018_) v ol v cc = 5.0v, i sink = 6ma t a = t min to t max 450 mv downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 3 www.maximintegrated.com electrical characteristicsmax9015Cmax9018 (single and dual s with ref) (continued) (v cc = 5v, v ee = 0v, v in - = v ref , t a = -40? to +85?, unless otherwise noted. typical values are at t a = +25?.) (note 1) parameter symbol conditions min typ max units output leakage current (max9016a/max9018_) i leak v cc = 5.5v, v out = 5.5v 0.001 1 a v cc = 1.8v 3 sourcing, v out = v ee (max9015a/ max9017_ only) v cc = 5.0v 35 v cc = 1.8v 3 output short-circuit current i sc sinking, v out = v cc v cc = 5.0v 33 ma v cc = 1.8v 7 high-to-low propagation delay (note 4) t pd- v cc = 5.0v 6 s max9015a/max9017_ 11 v cc = 1.8v max9016a/max9018_, r pullup = 100k  to v cc 12 max9015a/max9017_ 28 low-to-high propagation delay (note 4) t pd+ v cc = 5.0v max9016a/max9018_, r pullup = 100k  to v cc 31 s rise time t rise c l = 15pf (max9015a/max9017_) 1.6 s fall time t fall c l = 15pf 0.2 s power-up time t on 1.2 ms t a = +25c, 1.0% 1.224 1.236 1.248 max901_a t a = t min to t max , 2.5% 1.205 1.267 t a = +25c, 1.75% 1.218 1.240 1.262 reference voltage (note 5) v ref max901_b t a = t min to t max , 4.5% 1.184 1.296 v reference voltage temperature coefficient tc ref 40 ppm/c bw = 10hz to 1khz, c ref = 1nf 29 reference output voltage noise e n bw = 10hz to 6khz, c ref = 1nf 60 v rms reference line regulation  v ref /  v cc 1.8v  v cc  5.5v 0.5 mv/v reference load regulation  v ref /  i out i out = 0 to 100na 0.03 mv/na downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 4 www.maximintegrated.com electrical characteristicsmax9019/max9020 (duals without ref ) (v cc = 5v, v ee = 0v, t a = -40? to +85?, unless otherwise noted. typical values are at t a = +25?.) (note 1) parameter symbol conditions min typ max units supply voltage range v cc inferred from the psrr test 1.8 5.5 v v cc = 1.8v, t a = +25c 0.85 1.50 v cc = 5.0v, t a = +25c 1.1 1.70 supply current i cc max9019/ max9020 v cc = 5.0v, t a = t min to t max 2.0 a input common-mode voltage range v cm inferred from v os test v ee - 0.2 v cc + 0.2 v t a = +25c 1 5 input offset voltage v os v ee - 0.2v < v cm < v cc + 0.2v (note 2) t a = t min to t max 10 mv input-referred hysteresis v hb v ee - 0.2v < v cm < v cc + 0.2v (note 3) 4 mv t a = +25c 0.15 1 input bias current (ina-, ina+, inb+, inb-) i b t a = t min to t max 2 na power-supply rejection ratio psrr v cc = 1.8v to 5.5v 0.1 1 mv/v t a = +25c 55 200 v cc = 1.8v, i source = 1ma t a = t min to t max 300 t a = +25c 190 350 output voltage swing high (max9019 only) v cc - v oh v cc = 5.0v, i source = 6ma t a = t min to t max 450 mv t a = +25c 55 200 v cc = 1.8v, i sink = 1ma t a = t min to t max 300 t a = +25c 190 350 output voltage swing low v ol v cc = 5.0v, i sink = 6ma t a = t min to t max 450 mv output leakage current (max9020 only) i leak v cc = 5.5v, v out = 5.5v 0.001 1 a v cc = 1.8v 3 sourcing, v out = v ee (max9019 only) v cc = 5.0v 35 v cc = 1.8v 3 output short-circuit current i sc sinking, v out = v cc v cc = 5.0v 33 ma v cc = 1.8v 7 high-to-low propagation delay (note 4) t pd- v cc = 5.0v 6 s max9019 11 v cc = 1.8v max9020, r pullup = 100k  to v cc 12 max9019 28 low-to-high propagation delay (note 4) t pd+ v cc = 5.0v max9020, r pullup = 100k  to v cc 31 s downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 5 www.maximintegrated.com -note 1: all devices are 100% tested at t a = +25?. specifications over temperature (t a = t min to t max ) are guaranteed by design, not production tested. note 2: v os is defined as the center of the hysteresis band at the input. note 3: the hysteresis-related trip points are defined as the edges of the hysteresis band, measured with respect to the center of the band (i.e., v os ) (figure 1). note 4: specified with an input overdrive (v overdrive ) of 100mv, and a load capacitance of c l = 15pf. v overdrive is defined above and beyond the offset voltage and hysteresis of the comparator input. note 5: high current traces should not be routed in the vicinity of or below max9018. there is a chance of voltage reference being overloaded resulting in drop of output voltage. electrical characteristicsmax9019/max9020 (duals without ref ) (continued) (v cc = 5v, v ee = 0v, t a = -40? to +85?, unless otherwise noted. typical values are at t a = +25?.) (note 1) parameter symbol conditions min typ max units rise time t rise c l = 15pf (max9019 only) 1.6 s fall time t fall c l = 15pf 0.2 s power-up time t on 1.2 ms typical operating characteristics (v cc = 5v, v ee = 0v, c l = 15pf, v overdrive = 100mv, t a = +25?, unless otherwise noted.) 0.4 0.60.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 max9015/max9016 supply current vs. supply voltage and temperature max9015 toc01 supply voltage (v) supply current ( a) 1.5 2.5 2.0 3.0 4.0 3.5 4.5 5.0 5.5 t a = +85 c t a = +25 c t a = -40 c 0.8 1.00.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 max9017/max9018 supply current vs. supply voltage and temperature max9015 toc02 supply voltage (v) supply current ( a) 1.5 2.5 2.0 3.0 4.0 3.5 4.5 5.0 5.5 t a = +85 c t a = +25 c t a = -40 c 0.4 0.60.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 max9019/max9020 supply current vs. supply voltage and temperature max9015 toc03 supply voltage (v) supply current ( a) 1.5 2.5 2.0 3.0 4.0 3.5 4.5 5.0 5.5 t a = +85 c t a = +25 c t a = -40 c 0.4 0.60.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 max9015/max9016 supply current vs. temperature max9015 toc04 temperature ( c) supply current ( a) -40 -15 10 35 60 85 v cc = 3v v cc = 1.8v v cc = 5v 0.8 1.00.9 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 max9017/max9018 supply current vs. temperature max9015 toc05 temperature ( c) supply current ( a) -40 -15 10 35 60 85 v cc = 3v v cc = 1.8v v cc = 5v 0.4 0.60.5 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 max9019/max9020 supply current vs. temperature max9015 toc06 temperature ( c) supply current ( a) -40 -15 10 35 60 85 v cc = 3v v cc = 1.8v v cc = 5v downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 6 www.maximintegrated.com typical operating characteristics (continued) (v cc = 5v, v ee = 0v, c l = 15pf, v overdrive = 100mv, t a = +25?, unless otherwise noted.) 50 1 10 100 1k 10k 100k 40 4530 3520 2510 15 0 5 max9015/max9016 supply current vs. output transition frequency max9015 toc07 output transition frequency (hz) supply current ( a) v cc = 3v v cc = 1.8v v cc = 5v 35 1 10 100 1k 10k 100k 3020 2515 10 0 5 max9017/max9018 supply current vs. output transition frequency max9015 toc08 output transition frequency (hz) supply current ( a) v cc = 3v v cc = 1.8v v cc = 5v 50 1 10 100 1k 10k 100k 4530 35 4025 20 0 15 5 10 max9019/max9020 supply current vs. output transition frequency max9015 toc09 output transition frequency (hz) supply current ( a) v cc = 3v v cc = 1.8v v cc = 5v 0 150 200100 50 300 350250 500400 450 550 600 700650 750 0234 15 6 7 9 81 0 output voltage low vs. sink current max9015 toc10 sink current (ma) v ol (mv) v cc = 3v v cc = 1.8v v cc = 5v 0 100 200 400300 500 600 0 234 1 567 9 81 0 output voltage low vs. sink current and temperature max9015 toc11 sink current (ma) v ol (mv) t a = +85 c t a = -40 c t a = +25 c 0 0.1 0.2 0.50.3 0.4 0.6 0.7 0 234 1 567 9 81 0 output voltage high vs. source current max9015 toc12 source current (ma) v cc - v oh (v) v cc = 3v v cc = 1.8v v cc = 5v 0 0.1 0.2 0.50.3 0.4 0.6 0234 15 6 7 9 81 0 output voltage high vs. source current and temperature max9015 toc13 source current (ma) v cc - v oh (v) t a = +85 c t a = -40 c t a = +25 c 0 5 10 30 3525 15 20 40 -40 -15 10 35 60 85 short-circuit to v cc (sink current) vs. temperature max9015 toc14 temperature ( c) sink current (ma) v cc = 3v v cc = 1.8v v cc = 5v 0 5 10 3530 4540 25 15 20 50 -40 -15 10 35 60 85 short-circuit to gnd (source current) vs.temperature max9015toc15 temperature ( c) sink current (ma) v cc = 3v v cc = 1.8v v cc = 5v downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 7 www.maximintegrated.com input offset voltage distribution max9015 toc16 v os (mv) percentage of units (%) 1.2 0.9 -1.2 -0.9 -0.6 0 0.3 -0.3 0.6 1 2 3 4 5 6 7 80 -1.5 1.5 offset voltage vs. temperature max9015 toc17 temperature ( c) v os (mv) 60 35 10 -15 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 -2.0 -40 85 v cc = 1.8v v cc = 5v reference voltage distribution max9015 toc18 v ref (v) percentage of units (%) 1.238 1.236 1.234 5 10 15 20 25 30 0 1.232 1.240 a grade hysteresis voltage vs. temperature max9015 toc19 temperature ( c) v hb (mv) 60 35 10 -15 2.5 3.0 3.5 4.0 4.5 5.02.0 -40 85 1.234 1.2361.230 1.232 1.238 1.240 -40 -15 10 35 60 85 reference voltage vs. temperature max9015 toc20 temperature ( c) reference voltage (v) v cc = 3v v cc = 1.8v v cc = 5v a grade 1.234 1.235 1.2391.238 1.236 1.237 1.240 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 reference voltage vs. supply voltage max9015 toc21 supply voltage (v) reference voltage (v) 1.226 1.2321.229 1.235 1.238 08 0 40 120 160 200 reference voltage vs. reference source current max9015 toc22 reference source current (na) reference voltage (v) v cc = 1.8v v cc = 5v v cc = 3v 1.232 1.2381.236 1.234 1.2441.242 1.240 1.246 1.248 08 0 40 120 160 200 reference voltage vs. reference sink current max9015 toc23 reference sink current (na) reference voltage (v) v cc = 1.8v v cc = 5v v cc = 3v 1.225 1.2351.230 1.2451.240 1.250 1.255 08 0 40 120 160 200 reference voltage vs. reference sink current and temperature max9015 toc24 reference sink current (na) reference voltage (v) v cc = 3v t a = +85 c t a = +25 c t a = -40 c typical operating characteristics (continued) (v cc = 5v, v ee = 0v, c l = 15pf, v overdrive = 100mv, t a = +25?, unless otherwise noted.) downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 8 www.maximintegrated.com -1.000 -0.600 0.200 -0.200 0.600 1.000 -0.5 1.5 0.5 2.5 3.5 4.5 5.5 input bias current vs. input bias voltage max9015 toc25 input bias voltage (in-) (v) input bias current (in-) (na) in+ = 2.5v 0 64 2 1210 8 14 16 -40 10 -15 35 60 85 propagation delay (t pd- ) vs. temperature max9015 toc26 temperature ( c) t pd- ( s) v cc = 1.8v v cc = 5v v cc = 3v 0 10 3020 40 50 -40 10 -15 35 60 85 propagation delay (t pd+ ) vs. temperature max9015 toc27 temperature ( c) t pd+ ( s) v cc = 5v v cc = 3v v cc = 1.8v 180 0 0.01 0.1 1 10 100 1000 propagation delay (t pd- ) vs. capacitive load 20 40 max9015 toc28 capacitive load (nf) t pd- ( s) 8060 140 160120 100 v cc = 1.8v v cc = 3v v cc = 5v 200 0 0.01 0.1 1 10 100 1000 propagation delay (t pd+ ) vs. capacitive load 20 40 60 max9015 toc29 capacitive load (nf) t pd+ ( s) 100 80 160 180140 120 v cc = 1.8v v cc = 3v v cc = 5v 0 10 3020 40 50 0 20 10 20 30 40 50 propagation delay (t pd- ) vs. input overdrive max9015 toc30 input overdrive (mv) t pd- ( s) v cc = 1.8v v cc = 5v v cc = 3v 0 1510 5 3025 20 35 40 02 0 10 30 40 50 propagation delay (t pd+ ) vs. input overdrive max9015 toc31 input overdrive (mv) t pd+ ( s) v cc = 5v v cc = 3v v cc = 1.8v 4 10k 10m 1m 100k propagation delay (t pd- ) vs. pullup resistance 10 7 65 9 8 max9015 toc32 r pullup ( ) t pd- ( s) v cc = 1.8v v cc = 3v v cc = 5v 0 10k 10m 1m 100k propagation delay (t pd+ ) vs. pullup resistance 200 80 40 160 120 max9015 toc33 r pullup ( ) t pd+ ( s) v cc = 5v v cc = 3v v cc = 1.8v typical operating characteristics (continued) (v cc = 5v, v ee = 0v, c l = 15pf, v overdrive = 100mv, t a = +25?, unless otherwise noted.) downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 9 www.maximintegrated.com propagation delay (t pd- ) (v cc = 5v) max9015 toc34 2 s/div v out 2v/div v in+ 50mv/div propagation delay (t pd+ ) (v cc = 5v) max9015 toc35 10 s/div v out 2v/div v in+ 50mv/div propagation delay (t pd- ) (v cc = 3v) max9015 toc36 2 s/div v out 2v/div v in+ 50mv/div propagation delay (t pd+ ) (v cc = 3v) max9015 toc37 10 s/div v out 2v/div v in+ 50mv/div propagation delay (t pd- ) (v cc = 1.8v) max9015 toc38 2 s/div v out 1v/div v in+ 50mv/div propagation delay (t pd+ ) (v cc = 1.8v) max9015 toc39 10 s/div v out 1v/div v in+ 50mv/div 1khz response (v cc = 5v) max9015 toc40 200 s/div out2v/div in+50mv/div ac-coupled slow power-up/down response max9015 toc41 40 s/div v out 1v/div v cc 1v/div power-up response max9015 toc42 20 s/div v ref 1v/div v cc 2v/divv out 2v/div typical operating characteristics (continued) (v cc = 5v, v ee = 0v, c l = 15pf, v overdrive = 100mv, t a = +25?, unless otherwise noted.) downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 10 www.maximintegrated.com pin description pin max9015/ max9016 max9017/ max9018 max9019/ max9020 name function 1 ref 1.24v reference output 2 in- comparator inverting input 3 in+ comparator noninverting input 44 4v ee negative supply voltage 5, 8 n.c. no connection. not internally connected. 6 out comparator output 78 8v cc positive supply voltage 1 1 outa comparator a output 3 3 ina+ comparator a noninverting input 5 5 inb+ comparator b noninverting input 6 6 inb- comparator b inverting input 7 7 outb comparator b output 2 ina- comparator a inverting input ? ref/ ina- 1.24v reference output. internally connected to the inverting input ofcomparator a (max9017/max9018 only). max9015max9016 in+ out v cc v ee in- ref 1.24v 6 7 ref 4 max9017max9018 v cc 8 ina+ outa v cc v ee ref/ina- ref 1.24v 1 8 inb+ 4 inb- outb 7 3 2 56 3 2 56 ina+ v cc 8 max9019max9020 1 7 outa outb ina- inb+ inb- v ee 4 32 1 functional diagrams downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 11 www.maximintegrated.com detailed description the max9015?ax9018 feature an on-board 1.24v?.5% (?.45% for the b grade) reference, yet draw an ultra-low supply current. the max9019/max9020 (duals without reference) consume just 850na of supply current. all devices are guaranteed to operate down to 1.8v supply. their common-mode input voltage range extends 200mv beyond-the-rails. an internal 4mv hys- teresis ensures clean output switching, even with slow- moving input signals. large internal output drivers swing rail-to-rail with up to ?ma loads (max9015/ max9017/max9019). the output stage employs a unique design that mini- mizes supply-current surges while switching, which vir- tually eliminates the supply glitches typical of many other comparators. the max9015/max9017/max9019 have a push-pull output stage that sinks as well as sources current. the max9016/max9018/max9020 have an open-drain output stage that can be pulled beyond v cc up to 5.5v above v ee . these open-drain versions are ideal for implementing wire-ored outputlogic functions. input stage circuitry the input common-mode voltage ranges extend from v ee - 0.2v to v cc + 0.2v. these comparators operate at any differential input voltage within these limits. inputbias current is typically ?50pa at the trip point, if the input voltage is between the supply rails. comparator inputs are protected from overvoltage by internal esd protection diodes connected to the supply rails. as the input voltage exceeds the supply rails, these esd pro- tection diodes become forward biased and begin to conduct increasing input bias current (see the input bias current vs. input bias voltage graph in the typical operating characteristics ). output stage circuitry the max9015?ax9020 feature a unique break- before-make output stage capable of driving 8ma loads rail-to-rail. many comparators consume orders ofmagnitude more current during switching than during steady-state operation. however, with the max9015 max9020 family of comparators, the supply-current change during an output transition is extremely small. in the typical operating characteristics , the supply current vs. output transition frequency graphs showthe minimal supply-current increase as the output switching frequency approaches 1khz. this character- istic reduces the need for power-supply filter capaci- tors to reduce glitches created by comparator switching currents. in battery-powered applications, this characteristic results in a substantial increase in battery life. reference (max9015Cmax9018) the max9015?ax9018s?internal +1.24v reference has a typical temperature coefficient of 40ppm/? over the full -40? to +85? temperature range. the refer- ence is a very-low-power bandgap cell, with a typical 35k output impedance. ref can source and sink up to 100na to external circuitry. for applications needingincreased drive, buffer ref with a low input-bias cur- rent op amp such as the max4162. most applications require no ref bypass capacitor. for noisy environ- ments or fast transients, connect a 1nf to 10nf ceramic capacitor from ref to gnd. applications information low-voltage, low-power operation the max9015?ax9020 are ideally suited for use with most battery-powered systems. table 1 lists a variety of battery types, capacities, and approximate operating times for the max9015?ax9020, assuming nominal conditions. table 1. battery applications using the max9015Cmax9020 battery type rechargeable v fresh (v) v end-of- life (v) capacity, aa size (ma-hr) max9015a/ max9016a operating time (hr) max9017/ max9018 operating time (hr) max9019/ max9020 operating time (hr) alkaline (2 cells) no 3.0 1.8 2000 2000k 1540k 1333k nickel-cadmium(2 cells) yes 2.4 1.8 750 750k 570k 500k nickel-metal-hydride (2 cells) yes 2.4 1.8 1000 1000k 770k 660k lithium-ion (1 cell) yes 3.6 2.9 1000 1000k 770k 660k downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 12 www.maximintegrated.com internal hysteresis many comparators oscillate in the linear region of oper- ation because of noise or undesired parasitic feed- back. oscillations can occur when the voltage on one input is equal or very close to the voltage on the other input. the max9015?ax9020 have internal 4mv hys- teresis to counter parasitic effects and noise. the hysteresis in a comparator creates two trip points: one for the rising input voltage (v thr ) and one for the falling input voltage (v thf ) (figure 1). the difference between the trip points is the hysteresis (v hb ). when the comparator? input voltages are equal, the hystere-sis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. figure 1 illustrates the case in which the comparator? inverting input has a fixed voltage applied, and the noninverting input is var- ied. if the inputs were reversed, the figure would be the same, except with an inverted output. additional hysteresis (max9015/max9017/max9019) (push-pull outputs) the max9015/max9017/max9019 feature a built-in 4mv hysteresis band (v hb ). additional hysteresis can be generated with three resistors using positive feed-back (figure 2). use the following procedure to calcu- late resistor values: 1) select r3. input bias current at in_+ is less than 2na, so the current through r3 should be at least0.2? to minimize errors caused by input bias cur- rent. the current through r3 at the trip point is (v ref - v out )/r3. considering the two possible out- put states in solving for r3 yields two formulas: r3= v ref /ir3 or r3 = (v cc - v ref )/i r3 . use the small- er of the two resulting resistor values. for example,when using the max9017 (v ref = 1.24v) and v cc = 5v, and if we choose i r3 = 0.2?, then the two resistor values are 6.2m and 19m . choose a 6.2m standard value for r3. 2) choose the hysteresis band required (v hb ). for this example, choose 50mv. 3) calculate r1 according to the following equation: for this example, insert the values: 4) choose the trip point for v in rising (v thr ) such that: where v thr is the trip point for v in rising. this is the threshold voltage at which the comparator switchesits output from low to high as v in rises above the trip point. for this example, choose 3v. 5) calculate r2 as follows: for this example, choose a 44.2k standard value. r vx k k m k v 2 1 124 62 1 62 1 62 43 99 30 = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = (. ) . . . r v vx rrr thr ref 2 1 1 1 1 1 3 = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? vv v v thr ref hb cc >+ ? ? ? ? ? ? 1 rm mv v k 162 50 5 12 = ? ? ? ? ? ? = . rm mv v k 162 50 5 12 = ? ? ? ? ? ? = . thresholds out in+ in- v hb hysteresis band v thf v thr figure 1. threshold hysteresis band v cc max9015max9017 max9019 out r3 r1 r2 v ref v ee v in v cc figure 2. max9015/max9017/max9019 additional hysteresis downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 13 www.maximintegrated.com 6) verify the trip voltages and hysteresis as follows: v in rising: = 2.992v, which is equivalent to ref times r1 divided by the parallel combination of r1,r2: and r3. v in falling: = 2.942v: hysteresis = v thr - v thf = 50mv. additional hysteresis (max9016/max9018/max9020) (open-drain outputs) the max9016/max9018/max9020 feature a built-in 4mv hysteresis band. these devices have open-drain outputs and require an external pullup resistor (figure 3). additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the max9015/max9017/max9019. use the following procedure to calculate resistor values: 1) select r3. input bias current at in_+ is less than 2na, so the current through r3 should be at least0.2? to minimize errors caused by input bias cur- rent. the current through r3 at the trip point is (v ref - v out )/r3. considering the two possible out- put states in solving for r3 yields two formulas: r3= v ref /i r3 or r3 = [(v cc - v ref )/i r3 ] - r4. use the smaller of the two resulting resistor values. forexample, when using the max9018 (v ref = 1.24v) and v cc = 5v, and if we choose i r3 = 0.2?, and r4 = 1m , then the two resistor values are 6.2m and 18m . choose a 6.2m standard value for r3. 2) choose the hysteresis band required (v hb ). 3) calculate r1 according to the following equation. for this example, insert the values: 4) choose the trip point for v in rising (v thr ) such that: (v thr is the trip point for v in rising). this is the threshold voltage at which the comparator switchesits output from low to high as v in rises above the trip point. for this example, choose 3v: 5) calculate r2 as follows: for this example, choose a 49.9k standard value. 6) verify the trip voltages and hysteresis as follows: hysteresis = v thr - v thf = 50mv. v falling v v x r rr r r rr xv v in thf ref cc : . = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? + = 1 1 1 1 2 1 3 1 34 2 993 vrigv v xr rr r v in thr ref sin : . = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? = 1 1 1 1 2 1 3 3 043 r v vx k k m k 2 1 30 124 72 1 72 1 62 51 1 = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = . .. . r v vxr r r thr ref 2 1 1 1 1 1 3 = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? vv v v thr ref hb cc >+ ? ? ? ? ? ? 1 rmm mv v k 162 1 50 5 72 = + ? ? ? ? ? ? = (. ) rrr v v hb cc 134 =+ ? ? ? ? ? ? () vv rxv r thf thr cc = ? ? ? ? ? ? 1 3 vvx r rr r thr ref = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 2 1 3 v ee v cc out r3 r2 r1 r4 v ref v in v cc max9016max9018 max9020 figure 3. max9016/max9018/max9020 additional hysteresis downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 14 www.maximintegrated.com board layout and bypassing the max9015?ax9020 ultra-low supply current typical- ly requires no power-supply bypass capacitors. however, when the supply has high output impedance, long lead lengths or excessive noise, or fast transients, bypass v cc to v ee with a 0.1? capacitor placed as close to the v cc pin as possible. minimize signal trace lengths to reducestray capacitance. use a ground plane and surface- mount components for best performance. if ref is decoupled, use a low-leakage ceramic capacitor. high traces should not be routed in the vicinity of or below max9018. there is a chance of voltage reference being overloaded resulting in drop of output voltage. window detector the max9018 is ideal for window detectors (undervolt- age/overvoltage detectors). figure 4 shows a window detector circuit for a single-cell li+ battery with a 2.9v end- of-life charge, a peak charge of 4.2v, and a nominal value of 3.6v. choose different thresholds by changing the val- ues of r1, r2, and r3. outa provides an active-low undervoltage indication, and outb provides an active-low overvoltage indication. anding the two open-drain outputs provides an active-high, power-good signal. the design procedure is as follows: 1) select r1. the input bias current into inb- is nor- mally less than 2na, so the current through r1should exceed 100na for the thresholds to be accu- rate. in this example, choose r1 = 1.24m (1.24v/1?). 2) calculate r2 + r3. the overvoltage threshold should be 4.2v when v in is rising. the design equation is as follows: =2.95m 3) calculate r2. the undervoltage threshold should be 2.9v when v in is falling. the design equation is as follows: = 546k for this example, choose a 499k standard value 1% resistor. 4) calculate r3: r3 = (r2 + r3) - r2 = 2.95m - 546k = 240m 5) verify the resistor values. the equations are as fol- lows, evaluated for the above example: overvoltage threshold:undervoltage threshold: where the internal hysteresis band, v hb , is 4mv. zero-crossing detector figure 5 shows a zero-crossing detector application. the max9015/max9016/max9019/max9020s?invert- ing input is connected to ground, and its noninverting input is connected to a 100mv p-p signal source. as the signal at the noninverting input crosses zero, the com-parator? output changes state. vvvx rrr rr v uth ref hb = ++ + = () () () . 123 12 297 vvvx rrr r v oth ref hb =+ ++ = () () . 123 1 420 = + (. . ) (. ) . . 124 295 1 236 29 124 mm x m rrrrx vv v r ref hb uth 2123 1 =++ ? ? ? ? ? ? () = + ? ? ? ? ? ? ? ? ? ? ? ? ? ? 124 42 1 24 0 004 1 . . .. mx v v rrrx v vv oth ref hb 231 1 += + ? ? ? ? ? ? ? ? ? ? ? ? ? ? max9018 v cc ina+ outa v cc v ee ref/ina- ref 1.24v inb+ inb- outb v ee v in v oth = 4.2v v uth = 2.9v r3 r2 r1 5v power-good figure 4. window detector circuit downloaded from: http:///
max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 15 www.maximintegrated.com logic-level translator the open-drain comparators can be used to convert 5v logic to 3v logic levels. the max9020 can be powered by the 5v supply voltage, and the pullup resistor for the max9020? open-drain output is connected to the 3v supply voltage. this configuration allows the full 5v logic swing without creating overvoltage on the 3v logic inputs. for 3v to 5v logic-level translations, connect the 3v supply voltage to v cc and the 5v supply voltage to the pullup resistor. max9015max9016 max9019 max9020 in+ out v cc 100mv p-p v cc v ee in- figure 5. zero-crossing detector max9017 v cc ina+ outa v cc v ee ref/ina- ref 1.24v inb+ inb- outb v ee v in v oth = 4.2v v uth = 2.9v r3r2 r1 5v undervoltage overvoltage typical application circuit out n.c. v ee 12 8 7 n.c. v cc in- in+ ref sot23 top view 3 4 6 5 max9015max9016 inb- inb+ v ee 12 8 7 v cc outb ref/ina- ina+ outa sot23 3 4 6 5 max9017max9018 inb- inb+ v ee 12 8 7 v cc outb ina- ina+ outa sot23 3 4 6 5 max9019max9020 pin configurations downloaded from: http:///
chip information transistor count: 349process: bicmos package type package code outline no. land pattern no. 8 sot23 k8-5 21-0078 90-0176 ordering information (continued) part temp range pin-package top mark max9018 aeka-t -40? to +85? 8 sot23 aeir max9018beka-t -40? to +85? 8 sot23 aeit max9019 eka-t -40? to +85? 8 sot23 aeiu max9020 eka-t -40? to +85? 8 sot23 aeiv t = tape and reel. max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference maxim integrated | 16 www.maximintegrated.com package information for the latest package outline information and land patterns (foot-prints), go to www.maximintegrated.com/packages . note that a ?? ?? or ??in the package code indicates rohs status only.package drawings may show a different suffix character, but the drawing pertains to the package regardless of rohs status. downloaded from: http:///
maxim integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim integrated product. no circuit patent licenses are implied. maxim integrated reserves the right to change the circuitry and specifications without notice at any time. the parametric values (min and max limits) shown in the electrical characteristics table are guaranteed. other parametric values quoted in this data sheet are provided for guidance. maxim integrated and the maxim integrated logo are trademarks of maxim integrated products, inc. 2015 maxim integrated products, inc. | 17 max9015Cmax9020 sot23, dual, precision, 1.8v, nanopower comparators with/without reference revision history revision number revision date description pages changed 2 12/09 updated ec table parameters after final test changes 2, 4 3 10/13 added note 5 to electrical characteristics and revised board layout and bypassing section 5, 14 4 1/15 added max9015aeka/v+t to ordering information 2 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of MAX9015AEKAT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X